Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Biol Interact ; 395: 111006, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636792

RESUMO

Members of the Signal Peptide-Peptidase (SPP) and Signal Peptide-Peptidase-like (SPPL) family are intramembrane aspartyl-proteases like their well-studied homologs, the presenilins, which comprise the catalytically active subunit within the γ-secretase complex. The lack of in vitro cleavage assays for SPPL proteases limited their biochemical characterization as well as substrate identification and validation. So far, SPPL proteases have been analyzed exclusively in intact cells or membranes, restricting mechanistic analysis to co-expression of enzyme and substrate variants colocalizing in the same subcellular compartments. We describe the details of developing an in vitro cleavage assay for SPPL2b and its model substrate TNFα and analyzed the influence of phospholipids, detergent supplements, and cholesterol on the SPPL2b in vitro activity. SPPL2b in vitro activity resembles mechanistic principles that have been observed in a cellular context, such as cleavage sites and consecutive turnover of the TNFα transmembrane domain. The novel in vitro cleavage assay is functional with separately isolated protease and substrate and amenable to a high throughput plate-based readout overcoming previous limitations and providing the basis for studying enzyme kinetics, catalytic activity, substrate recognition, and the characteristics of small molecule inhibitors. As a proof of concept, we present the first biochemical in vitro characterization of the SPPL2a and SPPL2b specific small molecule inhibitor SPL-707.

2.
Nat Struct Mol Biol ; 13(10): 895-901, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16964259

RESUMO

The Mediator head module stimulates basal RNA polymerase II (Pol II) transcription and enables transcriptional regulation. Here we show that the head subunits Med8, Med18 and Med20 form a subcomplex (Med8/18/20) with two submodules. The highly conserved N-terminal domain of Med8 forms one submodule that binds the TATA box-binding protein (TBP) in vitro and is essential in vivo. The second submodule consists of the C-terminal region of Med8 (Med8C), Med18 and Med20. X-ray analysis of this submodule reveals that Med18 and Med20 form related beta-barrel folds. A conserved putative protein-interaction face on the Med8C/18/20 submodule includes sites altered by srb mutations, which counteract defects resulting from Pol II truncation. Our results and published data support a positive role of the Med8/18/20 subcomplex in initiation-complex formation and suggest that the Mediator head contains a multipartite TBP-binding site that can be modulated by transcriptional activators.


Assuntos
Proteínas de Saccharomyces cerevisiae/química , Proteína de Ligação a TATA-Box/química , Fatores de Transcrição/química , Transcrição Gênica , Sequência de Aminoácidos , Sítios de Ligação , Dimerização , Complexo Mediador , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Proteína de Ligação a TATA-Box/metabolismo , Fatores de Transcrição/metabolismo
3.
Microbiology (Reading) ; 151(Pt 11): 3469-3482, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16272371

RESUMO

VirB1-like proteins are believed to act as lytic transglycosylases, which facilitate the assembly of type IV secretion systems via localized lysis of the peptidoglycan. This paper presents the biochemical analysis of interactions of purified Brucella suis VirB1 with core components of the type IV secretion system. Genes encoding VirB1, VirB8, VirB9, VirB10 and VirB11 were cloned into expression vectors; the affinity-tagged proteins were purified from Escherichia coli, and analyses by gel filtration chromatography showed that they form monomers or homo-multimers. Analysis of protein-protein interactions by affinity precipitation revealed that VirB1 bound to VirB9 and VirB11. The results of bicistron expression experiments followed by gel filtration further supported the VirB1-VirB9 interaction. Peptide array mapping identified regions of VirB1 that interact with VirB8, VirB9 and VirB11 and underscored the importance of the C-terminus, especially for the VirB1-VirB9 interaction. The binding sites were localized on a structure model of VirB1, suggesting that different portions of VirB1 may interact with other VirB proteins during assembly of the type IV secretion machinery.


Assuntos
Proteínas de Bactérias/metabolismo , Brucella suis/enzimologia , Glicosiltransferases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Brucella suis/genética , Brucella suis/metabolismo , Dimerização , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos , Glicosiltransferases/química , Glicosiltransferases/genética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica
4.
J Mol Biol ; 350(5): 833-42, 2005 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-15979093

RESUMO

Cyclin C binds the cyclin-dependent kinases CDK8 and CDK3, which regulate mRNA transcription and the cell cycle, respectively. The crystal structure of cyclin C reveals two canonical five-helix repeats and a specific N-terminal helix. In contrast to other cyclins, the N-terminal helix is short, mobile, and in an exposed position that allows for interactions with proteins other than the CDKs. A model of the CDK8/cyclin C pair reveals two regions in the interface with apparently distinct roles. A conserved region explains promiscuous binding of cyclin C to CDK8 and CDK3, and a non-conserved region may be responsible for discrimination of CDK8 against other CDKs involved in transcription. A conserved and cyclin C-specific surface groove may recruit substrates near the CDK8 active site. Activation of CDKs generally involves phosphorylation of a loop at a threonine residue. In CDK8, this loop is longer and the threonine is absent, suggesting an alternative mechanism of activation that we discuss based on a CDK8-cyclin C model.


Assuntos
Quinases Ciclina-Dependentes/química , Ciclinas/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Quinase 8 Dependente de Ciclina , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/fisiologia , Ciclinas/metabolismo , Ciclinas/fisiologia , Ligação Proteica , Conformação Proteica , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiologia , Alinhamento de Sequência
5.
Genes Dev ; 19(12): 1401-15, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15964991

RESUMO

The C-terminal domain (CTD) of RNA polymerase II (Pol II) integrates nuclear events by binding proteins involved in mRNA biogenesis. CTD-binding proteins recognize a specific CTD phosphorylation pattern, which changes during the transcription cycle, due to the action of CTD-modifying enzymes. Structural and functional studies of CTD-binding and -modifying proteins now reveal some of the mechanisms underlying CTD function. Proteins recognize CTD phosphorylation patterns either directly, by contacting phosphorylated residues, or indirectly, without contact to the phosphate. The catalytic mechanisms of CTD kinases and phosphatases are known, but the basis for CTD specificity of these enzymes remains to be understood.


Assuntos
RNA Polimerase II/química , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA
6.
J Biol Chem ; 280(18): 18171-8, 2005 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-15710619

RESUMO

The Mediator of transcriptional regulation is the central coactivator that enables a response of RNA polymerase II (Pol II) to activators and repressors. We present the 3.0-A crystal structure of a highly conserved part of the Mediator, the MED7.MED21 (Med7.Srb7) heterodimer. The structure is very extended, spanning one-third of the Mediator length and almost the diameter of Pol II. It shows a four-helix bundle domain and a coiled-coil protrusion connected by a flexible hinge. Four putative protein binding sites on the surface allow for assembly of the Mediator middle module and for binding of the conserved subunit MED6, which is shown to bridge to the Mediator head module. A flexible MED6 bridge and the MED7.MED21 hinge could account for changes in overall Mediator structure upon binding to Pol II or activators. Our results support the idea that transcription regulation involves conformational changes within the general machinery.


Assuntos
Sequência Conservada , Proteínas de Saccharomyces cerevisiae/química , Transativadores/química , Fatores de Transcrição/química , Sequência de Aminoácidos , Cristalografia por Raios X , Dimerização , Zíper de Leucina/genética , Complexo Mediador , Dados de Sequência Molecular , Mapeamento de Peptídeos , Estrutura Secundária de Proteína/genética , Estrutura Terciária de Proteína/genética , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA